Прогнозирование с помощью шкал
- Белялов Ф.И. Возможности и перспективы систем поддержки принятия клинических решений // Клиническая медицина. 2021. T. 99. № 11–12. C. 602–607.
- Белялов Ф.И. Есть ли будущее у персонифицированной медицины? // Клиническая медицина. 2014. № 6. С. 73–74.
- Белялов Ф.И. Индивидуализированная медицина в клинической практике // Клиническая медицина. 2020. T. 98. № 1. С. 61–67.
- Белялов Ф.И. Использование шкал прогноза в клинической медицине // Российский кардиологический журнал. 2016. № 12. С. 23–27.
- Белялов Ф.И. Исследование механизмов нестабильного течения стенокардии // Сибирский медицинский журнал. 2001. № 1. С. 32–36.
- Белялов Ф.И. Клиника продромального периода при обострениях стенокардии // Клиническая медицина. 2001. № 8. С. 28–30.
- Белялов Ф.И. Психосоматические и средовые факторы при нестабильной стенокардии: дис. ... д-ра мед. наук. СПб, 2002. 222 c.
- Белялов Ф.И., Исхакова Г.И. Связи гелиогеофизических факторов и течения нестабильной стенокардии // Терапевтический архив. 2002. № 9. С. 34–36.
- Белялов Ф.И., Куклин С.Г. Вариабельность сердечного ритма при многодневном наблюдении за течением нестабильной стенокардии // Кардиология. 2002. № 1. С. 48–51.
- Гаврилов Д.В., Серова Л.М., Корсаков И.Н. и др. Предсказание сердечно-
сосудистых событий при помощи комплексной оценки факторов риска с использованием методов машинного обучения // Врач. 2020. № 5. С. 41–45. - Симаненков В.И., Белялов Ф.И., Куклин С.Г. Психосоматические отношения при нестабильной стенокардии // Социальная и клиническая психиатрия. 2004. № 3. С. 19–22.
- Adler E., Voors A., Klein L. et al. Improving risk prediction in heart failure using machine learning // Eur. J. Heart Failure. 2020. Vol. 22. N. 1. P. 139–147.
- Anderson K., Ross H.J., Austin P.C. et al. Health Care Use Before First Heart Failure Hospitalization // JACC: Heart Failure. 2020. Vol. 8. N. 12. P. 1024–1034.
- Arkes H.R., Aberegg S.K., Arpin K.A. Analysis of Physicians’ Probability Estimates of a Medical Outcome Based on a Sequence of Events // JAMA Netw. Open. 2022. Vol. 5. N. 6. P. e2218804.
- Aspberg S., Chang Y., Atterman A. et al. Comparison of the ATRIA, CHADS2, and CHA2DS2-VASc stroke risk scores in predicting ischaemic stroke in a large Swedish cohort of patients with atrial fibrillation // Eur. Heart J. 2016. Vol. 37. N. 42. P. 3203.
- Beck A.-J.C., Hagemeijer A., Tortolani B. et al. Comparing an unstructured risk stratification to published guidelines in acute coronary syndromes // West. J. Emerg. Med. 2015. Vol. 16. N. 5. P. 683–689.
- Brugnara G., Neuberger U., Mahmutoglu M.A. et al. Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning // Stroke. 2020. N. 12. P. 3541–3551.
- Chao T.-F., Lip G.Y.H., Liu C.-J. et al. Relationship of aging and incident comorbidities to stroke risk in patients with atrial fibrillation // J. Am. Coll. Cardiol. 2018. Vol. 71. N. 2. P. 122.
- Chew D.P., Hyun K., Morton E. et al. Objective Risk Assessment vs Standard Care for Acute Coronary Syndromes: A Randomized Trial // JAMA Cardiol. 2021. Vol. 6. N. 3. P. 304–313.
- Chia Y.C., Lim H.M., Ching S.M. Validation of the pooled cohort risk score in an Asian population — a retrospective cohort study // BMC Cardiovasc. Disord. 2014. Vol. 14. P. 163.
- Churpek M.M., Yuen T.C., Winslow C. et al. Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards // Crit. Care Med. 2016. Vol. 44. N. 2. P. 368–374.
- Collins G.S., Ogundimu E.O., Cook J.A. et al. Quantifying the impact of different approaches for handling continuous predictors on the performance of a prognostic model // Stat. Med. 2016. Vol. 35. N. 23. P. 4124–4135.
- Collins G.S., Reitsma J.B., Altman D.G., Moons K.G.M. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD). The TRIPOD Statement // Circulation. 2015. Vol. 131. P. 211–219.
- Dalton J.E., Perzynski A.T., Zidar D.A. et al. Accuracy of Cardiovascular Risk Prediction Varies by Neighborhood Socioeconomic Position: A Retrospective Cohort Study // Ann. Intern. Med. 2017. Vol. 167. P. 456–464.
- Deo R.C. Machine learning in medicine // Circulation. 2015. Vol. 132. N. 20. P. 1920.
- Fang W.F., Yang K.Y., Wu C.L. et al. Application comparison of scoring indices to predict outcomes in patients with healthcare associated pneumonia // Crit. Care. 2011. Vol. 15. N. 1. P. R32.
- Goldenberg I., Vyas A.K., Hall W.J. et al. Risk stratification for primary implantation of a cardioverter-defibrillator in patients with ischemic left ventricular dysfunction // J. Am. Coll. Cardiol. 2008. 51. N. 3. P. 288–296.
- Han D., Beecy A., Anchouche K. et al. Risk Reclassification With Coronary Computed Tomography Angiography-Visualized Nonobstructive Coronary Artery Disease According to 2018 American College of Cardiology/American Heart Association Cholesterol Guidelines // Am. J. Card. 2019. Vol. 124. N. 9. P. 1397–1405.
- Hijazi M., Aljohani S., Alqahtani F. et al. Perception of the Risk of Stroke and the Risks and Benefits of Oral Anticoagulation for Stroke Prevention in Patients With Atrial Fibrillation: A Cross-Sectional Study // Mayo Clinic Proceedings. 2019. Vol. 94. N. 6. P. 1015–1023.
- Horne B.D., May H.T., Muhlestein J.B. et al. Exceptional mortality prediction by risk scores from common laboratory tests // Am. J. Med. 2009. Vol. 122. N. 6. P. 550–558.
- Hu W.-S., Lin C.-L. CHA2DS2-VASc score in the prediction of ischemic bowel disease among patients with atrial fibrillation: Insights from a nationwide cohort // Int. J. Cardiol. 2017. Vol. 235. P. 56–60.
- Koliscak L., Maynor L. Pharmacologic prophylaxis against venous thromboembolism in hospitalized patients with cirrhosis and associated coagulopathies // Am. J. Health Syst. Pharm. 2012. Vol. 69. P. 658–663.
- König S., Pellissier V., Hohenstein S. et al. Machine learning algorithms for claims data-based prediction of in-hospital mortality in patients with heart failure // ESC Heart Failure. 2021. Vol. 8. N. 4. P. 3026–3036.
- Korsakov I., Gusev A., Kuznetsova T. et al. Deep and machine learning models to improve risk prediction of cardiovascular disease using data extraction from electronic health records // Eur. Heart J. 2019. Vol. 40. Suppl. 1.
- Kurtul A., Acikgoz S.K. Validation of the CHA2DS2-VASc Score in Predicting Coronary Atherosclerotic Burden and In-Hospital Mortality in Patients With Acute Coronary Syndrome // Am. J. Card. 2017. Vol. 120. N. 1. P. 8–14.
- Liew S.M., Doust J., Glasziou P. Cardiovascular risk scores do not account for
the effect of treatment: a review // Heart. 2011. Vol. 97. N. 9. P. 689–697. - Loke Y.K., Kwok C.S., Niruban A., Myint P.K. Value of severity scales in predicting mortality from community-acquired pneumonia: systematic review and meta-analysis // Thorax. 2010. Vol. 65. N. 10. P. 884–890.
- Loring Z., Mehrotra S., Piccini J. et al. Machine learning does not improve upon traditional regression in predicting outcomes in atrial fibrillation: an analysis of the ORBIT-AF and GARFIELD-AF registries // EP Europace. 2020. N. 11. P. 1635–1644.
- Marzouka G., Rivner H., Mehta V. et al. The CHA2DS2-VASc Score for Risk Stratification of Stroke in Heart Failure With-vs-Without Atrial Fibrillation // Am. J. Card. 2021. Vol. 155. P. 72–77.
- May H.T., Reiss–Brennan B., Brunisholz K.D., Horne B.D. Clinically feasible stratification of 3-year chronic disease risk in primary care: the mental health integration risk score // Psychosomatics. 2017. Vol. 58. N. 4. P. 395–405.
- Modi R., Patted S.V., Halkati P.C. et al. CHA2DS2-VASc-HSF score — New predictor of severity of coronary artery disease in 2976 patients // Int. J. Cardiol. 2017. Vol. 228. P. 1002–1006.
- Müller-Riemenschneider F., Holmberg C., Rieckmann N. et al. Barriers to routine risk-score use for healthy primary care patients: survey and qualitative study // Arch. Int. Med. 2010. Vol. 170. N. 8. P. 719–724.
- Muntner P., Whelton P.K. Using Predicted Cardiovascular Disease Risk in Conjunction With Blood Pressure to Guide Antihypertensive Medication Treatment // J. Am. Coll. Cardiol. 2017. Vol. 69. N. 19. P. 2446.
- Nashef S.A.M., Roques F., Sharples L.D. et al. EuroSCORE II // Eur. J. Cardiothorac. Surg. 2012. Vol. 41. N. 4. P. 734–745.
- Obermeyer Z., Emanuel E.J. Predicting the Future — Big Data, Machine Learning, and Clinical Medicine // N. Engl. J. Med. 2016. Vol. 375. N. 13.
P. 1216–1219. - Orvin K., Bental T., Assali A. et al. Usefulness of the CHA2DS2-VASc Score to Predict Adverse Outcomes in Patients Having Percutaneous Coronary Intervention // Am. J. Cardiol. 2016. Vol. 117. N. 9. P. 1433–1438.
- Orvin K., Levi A., Landes U. et al. Usefulness of the CHA2DS2-VASc Score to Predict Outcome in Patients Who Underwent Transcatheter Aortic Valve Implantation // Am. J. Card. 2018. Vol. 121. N. 2. P. 241–248.
- Pate A., Emsley R., Ashcroft D.M. et al. The uncertainty with using risk prediction models for individual decision making: an exemplar cohort study examining the prediction of cardiovascular disease in English primary care // BMC Med. 2019. Vol. 17. N. 1. P. 134.
- Pate A., van Staa T., Emsley R. et al. An assessment of the potential miscalibration of cardiovascular disease risk predictions caused by a secular trend in cardiovascular disease in England // BMC Med. Res. Meth. 2020. N. 1. P. 289.
- Phillips R., Xu J., Peterson L. et al. Impact of Cardiovascular Risk on the Relative Benefit and Harm of Intensive Treatment of Hypertension // J. Am. Coll. Card. 2018. N. 15. P. 1601–1610.
- Pirracchio R., Petersen M.L., Carone M. et al. Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA) a population-based study // Lancet Respir. Med. 2015. Vol. 3. N. 1. P. 42–52.
- Pisters R., Lane D.A., Nieuwlaat R. et al. A novel user-friendly score (HAS-BLED) to assess one-year risk of major bleeding in atrial fibrillation patients: The Euro Heart Survey // Chest. 2010. Vol. 138. N. 5. P. 1093–1100.
- Ren Y., Loftus T.J., Datta S. et al. Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform // JAMA Netw. Open. 2022. Vol. 5. N. 5.
P. e2211973. - Rücker V., Keil U., Fitzgerald A.P. et al. Predicting 10-Year Risk of Fatal Cardiovascular Disease in Germany: An Update Based on the SCORE-Deutschland Risk Charts // PLoS One. 2016. Vol. 11. N. 9. P. e0162188.
- Stähli B., Wischnewsky M., Jakob P. et al. Predictive value of the age, creatinine, and ejection fraction (ACEF) score in patients with acute coronary syndromes // Int. J. Card. 2018. Vol. 270. P. 7–13.
- Steinberg B.A., Shrader P., Kim S. et al. How well does physician risk as-sessment predict stroke and bleeding in atrial fibrillation? Results from the ORBIT-AF // Am. Heart J. 2016. Vol. 181. P. 145–152.
- Studziński K., Tomasik T., Krzysztoń J. et al. Effect of using cardiovascular risk scoring in routine risk assessment in primary prevention of cardiovascular disease: an overview of systematic reviews // BMC Cardiovasc. Disord. 2019. Vol. 19. N. 1. P. 11.
- Subherwal S., Bach R.G., Chen A.Y. et al. Baseline Risk of Major Bleeding in Non-ST-Segment-Elevation Myocardial Infarction: The CRUSADE Bleeding Score // Circulation. 2009. Vol. 119 N. 14. P. 1873–1882.
- Than M., Flaws D., Sanders S. et al. Development and validation of the Emergency Department Assessment of Chest pain Score and 2 h accelerated diagnostic protocol // Emerg. Med. Australas. 2014. Vol. 26. N. 1. P. 34–44.
- Topaz G., Pereg D., Shuvy M. et al. Preadmission CHA2DS2-VASc score and outcome of patients with acute cerebrovascular events // Int. J. Cardiol. 2017. Vol. 244. P. 277–281.
- Van den Ham H.A., Klungel O.H., Singer D.E. et al. Comparative Performance of ATRIA, CHADS2, and CHA2DS2-VASc Risk Scores Predicting Stroke in Patients With Atrial Fibrillation // J. Am. Coll. Cardiol. 2015. Vol. 66. N. 17.
P. 1851–1859. - Weiner D.E., Tighiouart H., Elsayed E.F. et al. The Framingham Predictive Instrument in Chronic Kidney Disease // J. Am. Coll. Cardiol. 2007. Vol. 50.
P. 217–224. - Weng S.F., Reps J., Kai J. et al. Can machine-learning improve cardiovascular risk prediction using routine clinical data? // PLOS ONE. 2017. Vol. 12. N. 4.
P. e0174944. - Wessler B.S., Nelson J., Park J.G. et al. External Validations of Cardiovascular Clinical Prediction Models: A Large-Scale Review of the Literature // Circ. Cardiovasc. Qual. Outcomes. 2021. Vol. 14. N. 8. P. e007858.
- Wessler B.S., Paulus J., Lundquist C.M. et al. Tufts PACE Clinical Predictive Model Registry: update 1990 through 2015 // Diagn. Progn. Res. 2017. N. 1.
P. 20. - Wick J.P., Turin T.C., Faris P.D. et al. A Clinical Risk Prediction Tool for 6-Month Mortality After Dialysis Initiation Among Older Adults // Am. J. Kidn. Dis. 2017. Vol. 69. N. 5. P. 568–575.
- Wykrzykowska J.J. et al. Value of Age, Creatinine, and Ejection Fraction (ACEF Score) in Assessing Risk in Patients Undergoing Percutaneous Coronary Interventions in the ‘All-Comers' LEADERS Trial // Circulation: Cardiovascular Interventions. 2011. N. 4. P. 47–56.
- Younis A., Goldberger J., Kutyifa V. et al. Predicted benefit of an implantable cardioverter-defibrillator: the MADIT-ICD benefit score // Eur. Heart J. 2021. N. 17. P. 1676–1684.
- Zhou L.Z., Yang X.B., Guan Y. et al. Development and Validation of a Risk Score for Prediction of Acute Kidney Injury in Patients With Acute Decompensated Heart Failure: A Prospective Cohort Study in China // J. Am. Heart Assoc. 2016. Vol. 5. N. 11.
- Zhu W., Fu L., Ding Y. et al. Meta-analysis of ATRIA versus CHA2DS2-VASc for predicting stroke and thromboembolism in patients with atrial fibrillation // Int. J. Cardiol. 2017. Vol. 227. P. 436–442.