Версия сайта для людей с нарушением зрения
только для медицинских специалистов

Консультант врача

Электронная медицинская библиотека

Раздел 6 / 6
Страница 1 / 31

Список литературы

1. Ge X.-Y., Li J.-L., Yang X.-L. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor // Nature. 2013. Vol. 503. P. 535‒538.

2. Liu Y., Yang Y., Zhang C. et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury // Science China Life Sciences. 2020. Vol. 63. P. 364‒374.

3. Hui D.S., Zumla A. Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features // Infect. Dis. Clin. 2019. Vol. 33. P. 869‒889.

4. Azhar E.I., Hui D.S., Memish Z.A. et al. The Middle East Respiratory Syndrome (MERS) // Infect. Dis. Clin. 2019. Vol. 33. P. 891‒905.

5. Li G., Fan Y., Lai Y. et al. Coronavirus infections and immune responses // J. Med. Virol. 2020. Vol. 92. P. 424‒432.

6. Li G., Hu R., Gu X. A close-up on COVID-19 and cardiovascular diseases // Nutrition, Metabolism and Cardiovascular Diseases Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology, 2020.

7. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. In: Seminars in immunopathology // Springer. 2017:529‒539.

8. Zhang W., Zhao Y., Zhang F. et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China // Clin. Immunol. 2020. Vol. 214. P. 108393.

9. Lippi G., Plebani M., Henry B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis // Clinica Chimica Acta. 2020. Vol. 506. P. 145‒148.

10. Short K.R., Kroeze E.J.B.V., Fouchier R.A.M., Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome // The Lancet Infect. Dis. 2014. Vol. 14. P. 57‒69.

11. Sood M.M., Rigatto C., Zarychanski R. et al. Acute Kidney Injury in Critically Ill Patients Infected With 2009 Pandemic Influenza A(H1N1): Report From a Canadian Province // Am. J. Kid. Dis. 2010. Vol. 55. P. 848‒855.

12. Harms P.W., Schmidt L.A., Smith L.B. et al. Autopsy findings in eight patients with fatal H1N1 influenza // Am. J. Clin. Pathol. 2010. Vol. 134. P. 27‒35.

13. Wang H., Xiao X., Lu J. et al. Factors associated with clinical outcome in 25 patients with avian influenza A (H7N9) infection in Guangzhou, China // BMC Infect. Dis. 2016. Vol. 16. P. 534.

14. Nie Q., Zhang D.-y., Wu W.-j. et al. Extracorporeal membrane oxygenation for avian influenza A (H7N9) patient with acute respiratory distress syndrome: a case report and short literature review // BMC Pulmon. Med. 2017. Vol. 17. P. 38.

15. Narasaraju T., Yang E., Samy R.P. et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis // Am. J. Pathol. 2011. Vol. 179. P. 199‒210.

16. Xu T., Qiao J., Zhao L. et al. Acute respiratory distress syndrome induced by avian influenza A (H5N1) virus in mice // Am. J. Resp. Crit. Care Med. 2006. Vol. 174. P. 1011‒1017.

17. Traylor Z.P., Aeffner F., Davis I.C. Influenza A H1N1 induces declines in alveolar gas exchange in mice consistent with rapid post-infection progression from acute lung injury to ARDS // Influenza and other respiratory viruses. 2013. Vol. 7. P. 472‒479.

18. Kash J.C., Taubenberger J.K. The role of viral, host, and secondary bacterial factors in influenza pathogenesis // Am. J. Pathol. 2015. Vol. 185. P. 1528‒1536.

19. Moorthy A.N., Rai P., Jiao H. et al. Capsules of virulent pneumococcal serotypes enhance formation of neutrophil extracellular traps during in vivo pathogenesis of pneumonia // Oncotarget. 2016. Vol. 7. P. 19327.

20. Narasaraju T., Harshini A. Neutrophils as possible therapeutic targets in severe influenza pneumonia. J. Infect. Pulmon. Dis. 2016.Vol. 2.

21. Bonaventura A., Montecucco F., Dallegri F. et al. Novel findings in neutrophil biology and their impact on cardiovascular disease // Cardiovasc. Res. 2019. Vol. 115. P. 1266‒1285.

22. Bonaventura A., Vecchié A., Abbate A., Montecucco F. Neutrophil Extracellular Traps and Cardiovascular Diseases: An Update // Cells. 2020. Vol. 9. P. 231.

23. Burzynski L.C., Humphry M., Pyrillou K. et al. The coagulation and immune systems are directly linked through the activation of interleukin-1α by thrombin // Immunity. 2019. Vol. 50. P. 1033‒1042. e1036.

24. Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity // Nat. Rev. Immunol. 2013. Vol. 13. P. 34‒45.

25. Jenne C.N., Kubes P. Platelets in inflammation and infection // Platelets. 2015. Vol. 26. P. 286‒292.

26. Rendu F., Brohard-Bohn B. The platelet release reaction: granules' constituents, secretion and functions // Platelets. 2001. Vol. 12. P. 261‒273.

27. Kenny E.F., Herzig A., Krüger R. et al. Diverse stimuli engage different neutrophil extracellular trap pathways // Elife. 2017. Vol. 6. P. e24437.

28. Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria // Science. 2004. Vol. 303. P. 1532‒1535.

Для продолжения работы требуется вход / регистрация