только для медицинских специалистов

Консультант врача

Электронная медицинская библиотека

Раздел 22 / 22
Страница 1 / 1

Список литературы

  1. Davis G. The evolution of cataract surgery // Mol. Med. 2016. Vol. 113. P. 58–62.
  2. Fine I.H. Architecture and construction of a self-sealing incision for cataract surgery // J. Cataract Refract. Surg. 1991. Vol. 17. Suppl. P. 672–676. DOI: https://doi.org/10.1016/s0886-3350(13)80682-7
  3. Fine H., Packer M., Hoffman R. Chapter 2: Surgical techniques for small incision cataract surgery // Essentials in Ophthalmology, Cataract and Refractive Surgery / Eds T. Kohnen, D.D. Koch. Springer, 2005. P. 19–34.
  4. Leaming D.V. Practice styles and preferences of ASCRS members-1992 survey. American Society of Cataract and Refractive Surgeons // J. Cataract Refract. Surg. 1993. Vol. 19. P. 600–606. DOI: https://doi.org/10.1016/s0886-3350(13)80007-7
  5. Leaming D.V. Practice styles and preferences of ASCRS members-1995 survey // J. Cataract Refract. Surg. 1996. Vol. 22. P. 931–939. DOI: https://doi.org/10.1016/s0886-3350(96)80194-5
  6. Leaming D.V. Practice styles and preferences of ASCRS members-2000 survey. American Society of Cataract and Refractive Surgery // J. Cataract Refract. Surg. 2001. Vol. 27. P. 948–955. DOI: https://doi.org/10.1016/s0886-3350(01)00905-1
  7. Leaming D.V. Practice styles and preferences of ASCRS members-2003 survey // J. Cataract Refract. Surg. 2004. Vol. 30. P. 892–900. DOI: https://doi.org/10.1016/j.jcrs.2004.02.064
  8. Freeman W. Ophthalmic comprehensive reports. 2021 single-use ophthalmic surgical products market report: global analysis for 2020 to 2026. Market Scope, September, 2021. URL: https://www.market-scope.com/pages/reports/354/2022-ophthalmic-surgicalinstruments-market-report-global-analysis-for-2021-to-2027-november-2022
  9. Fine I.H. Clear corneal incisions // Int. Ophthalmol. Clin. 1994. Vol. 34. P. 59–72. DOI: https://doi.org/10.1097/00004397-199403420-00005
  10. Elkady B., Pinero D., Alio J.L. Corneal incision quality: microincision cataract surgery versus microcoaxial phacoemulsification // J. Cataract Refract. Surg. 2009. Vol. 35. P. 466–474. DOI: https://doi.org/10.1016/j.jcrs.
    2008.11.047
  11. Dewey S., Beiko G., Braga-Mele R. et al. Microincisions in cataract surgery // J. Cataract Refract. Surg. 2014. Vol. 40. P. 1549–1557. DOI: https://doi.org/10.1016/j.jcrs.2014.07.006
  12. Lyles G.W., Cohen K.L., Lam D. OCT-documented incision features and natural history of clear corneal incisions used for bimanual microincision cataract surgery // Cornea. 2011. Vol. 30. P. 681–686. DOI: https://doi.org/10.1097/ICO.0b013e31820128bb
  13. Teixeira A., Salaroli C., Filho F.R. et al. Architectural analysis of clear corneal incision techniques in cataract surgery using Fourier-domain OCT // Ophthalmic Surg. Lasers Imaging. 2012. Vol. 43. P. S103–S108. DOI: https://doi.org/10.3928/15428877-20121003-02
  14. Torres L.F., Saez-Espinola F., Colina J.M. et al. In vivo architectural analysis of 3.2 mm clear corneal incisions for phacoemulsification using optical coherence tomography // J. Cataract Refract. Surg. 2006. Vol. 32. P. 1820–1826. DOI: https://doi.org/10.1016/j.jcrs.2006.06.020
  15. Calladine D. Optical coherence tomography studies of clear corneal incision wound architecture // J. Cataract Refract. Surg. 2011. Vol. 37. P. 1375. DOI: https://doi.org/10.1016/j.jcrs.2011.05.002
  16. Calladine D., Packard R. Clear corneal incision architecture in the immediate postoperative period evaluated using optical coherence tomography // J. Cataract Refract. Surg. 2007. Vol. 33. P. 1429–1435. DOI: https://doi.org/10.1016/j.jcrs.2007.04.011
  17. Li S.S., Misra S.L., Wallace H.B., McKelvie J. Effect of phacoemulsification incision size on incision repair and remodeling: optical coherence tomography assessment // J. Cataract Refract. Surg. 2018. Vol. 44. P. 1336–1343. DOI: https://doi.org/10.1016/j.jcrs.2018.07.025
  18. Dupont-Monod S., Labbe A., Fayol N. et al. In vivo architectural analysis of clear corneal incisions using anterior segment optical coherence tomography // J. Cataract Refract. Surg. 2009. Vol. 35. P. 444–450. DOI: https://doi.org/10.1016/j.jcrs.2008.11.034
  19. Fine I.H., Hoffman R.S., Packer M. Profile of clear corneal cataract incisions demonstrated by ocular coherence tomography // J. Cataract Refract. Surg. 2007. Vol. 33. P. 94–97. DOI: https://doi.org/10.1016/j.jcrs.2006.09.016
  20. Schallhorn J.M., Tang M., Li Y. et al. Optical coherence tomography of clear corneal incisions for cataract surgery // J. Cataract Refract. Surg. 2008. Vol. 34. P. 1561–1565. DOI: https://doi.org/10.1016/j.jcrs.2008.05.026
  21. Tan Q.Q., Tian J., Liao X. et al. Impact of different clear corneal incision sizes on anterior corneal aberration for cataract surgery // Arq. Bras. Oftalmol. Vol. 2020. Vol. 83. P. 478–484. DOI: https://doi.org/10.5935/0004-2749.20200089
  22. He Q., Huang J., He X. et al. Effect of corneal incision features on anterior and posterior corneal astigmatism and higher-order aberrations after cataract surgery // Acta Ophthalmol. 2021. Vol. 99. P. e1027–e1040. DOI: https://doi.org/10.1111/aos.14778
  23. Li X., Chen X., He S., Xu W. Effect of 1.8-mm steep-axis clear corneal incision on the posterior corneal astigmatism in candidates for toric IOL implantation // BMC Ophthalmol. 2020. Vol. 20. P. 187. DOI: https://doi.org/10.1186/s12886-020-01456-3
  24. Hayashi K., Yoshida M., Hirata A., Yoshimura K. Changes in shape and astigmatism of total, anterior, and posterior cornea after long versus short clear corneal incision cataract surgery // J. Cataract Refract. Surg. 2018. Vol. 44. P. 39–49. DOI: https://doi.org/10.1016/j.jcrs.2017.10.037
  25. Al Mahmood A.M., Al-Swailem S.A., Behrens A. Clear corneal incision in cataract surgery // Middle East Afr. J. Ophthalmol. 2014. Vol. 21. P. 25–31. DOI: https://doi.org/10.4103/0974-9233.124084
  26. Mastropasqua L., Toto L., Mastropasqua A. et al. Femtosecond laser versus manual clear corneal incision in cataract surgery // J. Refract. Surg. 2014. Vol. 30. P. 27–33. DOI: https://doi.org/10.3928/1081597x-20131217-03
  27. Grewal D.S., Basti S. Comparison of morphologic features of clear corneal incisions created with a femtosecond laser or a keratome // J. Cataract Refract. Surg. 2014. Vol. 40. P. 521–530. DOI: https://doi.org/10.1016/j.jcrs.2013.11.028
  28. Ferreira T.B., Ribeiro F.J., Pinheiro J. et al. Comparison of surgically induced astigmatism and morphologic features resulting from femtosecond laser and manual clear corneal incisions for cataract surgery // J. Refract. Surg. 2018. Vol. 34. P. 322–329. DOI: https://doi.org/10.3928/1081597X-20180301-01
  29. Dick H.B., Schwenn O., Krummenauer F. et al. Inflammation after sclerocorneal versus clear corneal tunnel phacoemulsification // Ophthalmology. 2000. Vol. 107. P. 241–247. DOI: https://doi.org/10.1016/s0161-6420(99)00082-2
  30. Crandall A.S. Anesthesia modalities for cataract surgery // Curr. Opin. Ophthalmol. 2001. Vol. 12. P. 9–11. DOI: https://doi.org/10.1097/00055735-200102000-00003
  31. Nikose A.S., Saha D., Laddha P.M., Patil M. Surgically induced astigmatism after phacoemulsification by temporal clear corneal and superior clear corneal approach: a comparison // Clin. Ophthalmol. 2018. Vol. 12. P. 65–70. DOI: https://doi.org/10.2147/OPTH.S149709
  32. Tejedor J., Murube J. Choosing the location of corneal incision based on preexisting astigmatism in phacoemulsification // Am. J. Ophthalmol. 2005. Vol. 139. P. 767–776. DOI: https://doi.org/10.1016/j.ajo.2004.12.057
  33. Taban M., Behrens A., Newcomb R.L. et al. Acute endophthalmitis following cataract surgery: a systematic review of the literature // Arch. Ophthalmol. 2005. Vol. 123. P. 613–620. DOI: https://doi.org/10.1001/archopht.123.5.613
  34. Cao H., Zhang L., Li L., Lo S. Risk factors for acute endophthalmitis following cataract surgery: a systematic review and meta-analysis // PLoS One. 2013. Vol. 8. Article ID e71731. DOI: https://doi.org/10.1371/journal.pone.0071731
  35. West E.S., Behrens A., McDonnell P.J. et al. The incidence of endophthalmitis after cataract surgery among the U.S. Medicare population increased between 1994 and 2001 // Ophthalmology. 2005. Vol. 112. P. 1388–1394. DOI: https://doi.org/10.1016/j.ophtha.2005.02.028
  36. Colleaux K.M., Hamilton W.K. Effect of prophylactic antibiotics and incision type on the incidence of endophthalmitis after cataract surgery // Can. J. Ophthalmol. 2000. Vol. 35. P. 373–378. DOI: https://doi.org/10.1016/s0008-4182(00)80124-6
  37. Lundstrom M., Wejde G., Stenevi U. et al. Endophthalmitis after cataract surgery: a nationwide prospective study evaluating incidence in relation to incision type and location // Ophthalmology. 2007. Vol. 114. P. 866–870. DOI: https://doi.org/10.1016/j.ophtha.2006.11.025
  38. Oshika T., Hatano H., Kuwayama Y. et al. Incidence of endophthalmitis after cataract surgery in Japan // Acta Ophthalmol. Scand. 2007. Vol. 85. P. 848–851. DOI: https://doi.org/10.1111/j.1600-0420.2007.00932.x
  39. Miller J.J., Scott I.U., Flynn H.W. Jr et al. Acute-onset endophthalmitis after cataract surgery (2000–2004): incidence, clinical settings, and visual acuity outcomes after treatment // Am. J. Ophthalmol. 2005. Vol. 139. P. 983–987. DOI: https://doi.org/10.1016/j.ajo.2005.01.025
  40. Krummenauer F., Kurz S., Dick H.B. Epidemiological and health economical evaluation of intraoperative antibiosis as a protective agent against endophthalmitis after cataract surgery // Eur. J. Med. Res. 2005. Vol. 10. P. 71–75.
  41. Ng J.Q., Morlet N., Bulsara M.K., Semmens J.B. Reducing the risk for endophthalmitis after cataract surgery: population-based nested case-control study: endophthalmitis population study of Western Australia sixth report // J. Cataract Refract. Surg. 2007. Vol. 33. P. 269–280. DOI: https://doi.org/10.1016/j.jcrs.2006.10.067
  42. Khanna R.C., Ray V.P., Latha M. et al. Risk factors for endophthalmitis following cataract surgery-our experience at a tertiary eye care centre in India // Int. J. Ophthalmol. 2015. Vol. 8. P. 1184–1189. DOI: https://doi.org/10.3980/j.issn.2222-3959.2015.06.19
  43. Monica M.L., Long D.A. Nine-year safety with self-sealing corneal tunnel incision in clear cornea cataract surgery // Ophthalmology. 2005. Vol. 112. P. 985–986. DOI: https://doi.org/10.1016/j.ophtha.2004.12.030
  44. Nichamin L.D., Chang D.F., Johnson S.H. et al. ASCRS white paper: what is the association between clear corneal cataract incisions and postoperative endophthalmitis? // J. Cataract Refract. Surg. 2006. Vol. 32. P. 1556–1559. DOI: https://doi.org/10.1016/j.jcrs.2006.07.009
  45. Pershing S., Lum F., Hsu S. et al. Endophthalmitis after cataract surgery in the United States: a report from the intelligent research in sight registry, 2013–2017 // Ophthalmology. 2020. Vol. 127. P. 151–158. DOI: https://doi.org/10.1016/j.ophtha.2019.08.026
  46. Friling E., Johansson B., Lundstrom M., Montan P. Postoperative endophthalmitis in immediate sequential bilateral cataract surgery: a nationwide registry study // Ophthalmology. 2022. Vol. 129. P. 26–34. DOI: https://doi.org/10.1016/j.ophtha.2021.07.007
  47. Zafar S., Dun C., Srikumaran D. et al. Endophthalmitis rates among Medicare beneficiaries undergoing cataract surgery between 2011 and 2019 // Ophthalmology. 2022. Vol. 129. P. 250–257. DOI: https://doi.org/10.1016/j.ophtha.2021.09.004
  48. Shi S.L., Yu X.N., Cui Y.L. et al. Incidence of endophthalmitis after phacoemulsification cataract surgery: a meta-analysis // Int. J. Ophthalmol. 2022. Vol. 15. P. 327–335. DOI: https://doi.org/10.18240/ijo.2022.02.20
  49. Kim M.E., Kim D.B. Cataract incision-related corneal erosion: recurrent corneal erosion because of clear corneal cataract surgery // J. Cataract Refract. Surg. 2020. Vol. 46. P. 1436–1440. DOI: https://doi.org/10.1097/j.jcrs.0000000000000345
  50. Olsen T., Dam-Johansen M., Bek T., Hjortdal J.O. Corneal versus scleral tunnel incision in cataract surgery: a randomized study // J. Cataract Refract. Surg. 1997. Vol. 23. P. 337–341. DOI: https://doi.org/10.1016/s0886-3350(97)80176-9
  51. Marcon A.S., Rapuano C.J., Jones M.R. et al. Descemet’s membrane detachment after cataract surgery: management and outcome // Ophthalmology. 2002. Vol. 109. P. 2325–2330. DOI: https://doi.org/10.1016/s0161-6420(02)01288-5
  52. Singhal D., Sahay P., Goel S. et al. Descemet membrane detachment // Surv. Ophthalmol. 2020. Vol. 65. P. 279–93. DOI: https://doi.org/10.1016/j.survophthal.2019.12.006
  53. May W., Castro-Combs J., Camacho W. et al. Analysis of clear corneal incision integrity in an ex vivo model // J. Cataract Refract. Surg. 2008. Vol. 34. P. 1013–1018. DOI: https://doi.org/10.1016/j.jcrs.2008.01.038
  54. Masket S., Belani S. Proper wound construction to prevent short-term ocular hypotony after clear corneal incision cataract surgery // J. Cataract Refract. Surg. 2007. Vol. 33. P. 383–386. DOI: https://doi.org/10.1016/j.jcrs.2006.11.006
  55. Kim K.H., Kim W.S. Aniridia after blunt trauma and presumed wound dehiscence in a pseudophakic eye // Arq. Bras. Oftalmol. 2016. Vol. 79. P. 44–45. DOI: https://doi.org/10.5935/0004-2749.20160013
  56. Beltrame G., Salvetat M.L., Driussi G., Chizzolini M. Effect of incision size and site on corneal endothelial changes in cataract surgery // J. Cataract Refract. Surg. 2002. Vol. 28. P. 118–125. DOI: https://doi.org/10.1016/s0886-3350(01)00983-x
  57. Kohnen T., Lambert R.J., Koch D.D. Incision sizes for foldable intraocular lenses // Ophthalmology. 1997. Vol. 104. P. 1277–1286. DOI: https://doi.org/10.1016/s0161-6420(97)30147-x
  58. Ernest P., Tipperman R., Eagle R. et al. Is there a difference in incision healing based on location? // J. Cataract Refract. Surg. 1998. Vol. 24. P. 482–486. DOI: https://doi.org/10.1016/s0886-3350(98)80288-5
  59. Liu J., Wolfe P., Hernandez V., Kohnen T. Comparative assessment of the corneal incision enlargement of 4 preloaded IOL delivery systems // J. Cataract Refract. Surg. 2020. Vol. 46. P. 1041–1046. DOI: https://doi.org/10.1097/j.jcrs.0000000000000214
  60. Cennamo M., Favuzza E., Salvatici M.C. et al. Effect of manual, preloaded, and automated preloaded injectors on corneal incision architecture after IOL implantation // J. Cataract Refract. Surg. 2020. Vol. 46. P. 1374–1380. DOI: https://doi.org/10.1097/j.jcrs.0000000000000295
  61. Arboleda A., Arrieta E., Aguilar M.C. et al. Variations in intraocular lens injector dimensions and corneal incision architecture after cataract surgery // J. Cataract Refract. Surg. 2019. Vol. 45. P. 656–661. DOI: https://doi.org/10.1016/j.jcrs.2018.10.047
  62. Packard R. OCT analysis of clear corneal incision width over time. Presented at the ASCRS Meeting, San Diego, March 25–29, 2011.
  63. Berdahl J.P., DeStafeno J.J., Kim T. Corneal wound architecture and integrity after phacoemulsification evaluation of coaxial, microincision coaxial, and microincision bimanual techniques // J. Cataract Refract. Surg. 2007. Vol. 33. P. 510–515. DOI: https://doi.org/10.1016/j.jcrs.2006.11.012
  64. Vasavada V., Vasavada A.R., Vasavada V.A. et al. Incision integrity and postoperative outcomes after microcoaxial phacoemulsification performed using 2 incision-dependent systems // J. Cataract Refract. Surg. 2013. Vol. 39. P. 563–571. DOI: https://doi.org/10.1016/j.jcrs.2012.11.018
  65. Kurz S., Krummenauer F., Gabriel P. et al. Biaxial microincision versus coaxial small-incision clear cornea cataract surgery // Ophthalmology. 2006. Vol. 113. P. 1818–1826. DOI: https://doi.org/10.1016/j.ophtha.2006.05.013
  66. Cavallini G.M., Campi L., Torlai G. et al. Clear corneal incisions in bimanual microincision cataract surgery: long-term wound-healing architecture // J. Cataract Refract. Surg. 2012. Vol. 38. P. 1743–1748. DOI: https://doi.org/10.1016/j.jcrs.2012.05.044
  67. Wilczynski M., Supady E., Loba P., Synder A. et al. Comparison of early corneal endothelial cell loss after coaxial phacoemulsification through 1.8 mm microincision and bimanual phacoemulsification through 1.7 mm microincision // J. Cataract Refract. Surg. 2009. Vol. 35. P. 1570–1574. DOI: https://doi.org/10.1016/j.jcrs.2009.05.014
  68. Cavallini G.M., Verdina T., De Maria M. et al. Bimanual microincision cataract surgery with implantation of the new Incise((R)) MJ14 intraocular lens through a 1.4 mm incision // Int. J. Ophthalmol. 2017. Vol. 10. P. 1710–1715. DOI: https://doi.org/10.18240/ijo.2017.11.12
  69. Borkenstein A.F., Borkenstein E.M. Geometry of acrylic, hydrophobic IOLs and changes in haptic-capsular bag relationship according to compression and different well diameters: a bench study using computed tomography // Ophthalmol. Ther. 2022. Vol. 11. P. 711–727. DOI: https://doi.org/10.1007/s40123-022-00469-z
  70. Masket S., Wang L., Belani S. Induced astigmatism with 2.2- and 3.0-mm coaxial phacoemulsification incisions // J. Refract. Surg. 2009. Vol. 25. P. 21–24. DOI: https://doi.org/10.3928/1081597X-20090101-04
  71. Yu Y.B., Zhu Y.N., Wang W. et al. A comparable study of clinical and optical outcomes after 1.8, 2.0 mm microcoaxial and 3.0 mm coaxial cataract surgery // Int. J. Ophthalmol. 2016. Vol. 9. P. 399–405. DOI: https://doi.org/10.18240/ijo.2016.03.13
  72. Febbraro J.L., Wang L., Borasio E. et al. Astigmatic equivalence of 2.2-mm and 1.8-mm superior clear corneal cataract incision // Graefes Arch. Clin. Exp. Ophthalmol. 2015. Vol. 253. P. 261–265. DOI: https://doi.org/10.1007/s00417-014-2854-5
  73. Tagawa K., Higashide T., Sugiyama K., Kawasaki K. Surgically induced astigmatism after micro and small clear temporal corneal incision in cataract surgery // Nippon Ganka Gakkai Zasshi. 2007. Vol. 111. P. 716–721.
  74. Yang J., Wang X., Zhang H. et al. Clinical evaluation of surgery-induced astigmatism in cataract surgery using 2.2 mm or 1.8 mm clear corneal microincisions // Int. J. Ophthalmol. 2017. Vol. 10. P. 68–71. DOI: https://doi.org/10.18240/ijo.2017.01.11
  75. Menda S.A., Chen M., Naseri A. Technique for shortening a long clear corneal incision // Arch. Ophthalmol. 2012. Vol. 130. P. 1589–1590. DOI: https://doi.org/10.1001/archophthalmol.2012.2536
  76. Ernest P.H., Lavery K.T., Kiessling L.A. Relative strength of scleral corneal and clear corneal incisions constructed in cadaver eyes // J. Cataract Refract. Surg. 1994. Vol. 20. P. 626–629. DOI: https://doi.org/10.1016/s0886-3350(13)80651-7
  77. Wilczynski M., Supady E., Wierzchowski T. et al. The effect of corneal tunnel length in patients after standard phacoemulsification through a 2.75 mm incision on surgically induced astigmatism, corneal thickness and endothelial cell density // Klin. Ocz. 2016. Vol. 117. P. 236–242.
  78. Sonmez S., Karaca C. The effect of tunnel length and position on postoperative corneal astigmatism: an optical coherence tomographic study // Eur. J. Ophthalmol. 2020. Vol. 30. P. 104–111. DOI: https://doi.org/10.1177/1120672118805875
  79. Taban M., Rao B., Reznik J. et al. Dynamic morphology of sutureless cataract wounds-effect of incision angle and location // Surv. Ophthalmol. 2004. Vol. 49. P. S62–S72. DOI: https://doi.org/10.1016/j.survophthal.2004.01.003
  80. Rao B., Zhang J., Taban M. et al. Imaging and investigating the effects of incision angle of clear corneal cataract surgery with optical coherence tomography // Opt. Express. 2003. Vol. 11. P. 3254–3261. DOI: https://doi.org/10.1364/oe.11.003254
  81. May W.N., Castro-Combs J., Quinto G.G. et al. Standardized Seidel test to evaluate different sutureless cataract incision con-figurations // J. Cataract Refract. Surg. 2010. Vol. 36. P. 1011–1017. DOI: https://doi.org/10.1016/j.jcrs.2009.12.036
  82. Friedman N. Cataract incisions: wound construction // Opthalmology Web. July 2009. URL: https://www.ophthalmologyweb.com/Featured-Articles/19922-Cataract-Incisions-Wound-Construction
  83. Teuma E.V., Bott S., Edelhauser H.F. Sealability of ultrashort-pulse laser and manually generated full-thickness clear corneal incisions // J. Cataract Refract. Surg. 2014. Vol. 40. P. 460–468. DOI: https://doi.org/10.1016/j.jcrs.2013.08.059
  84. Calladine D., Ward M., Packard R. Adherent ocular bandage for clear corneal incisions used in cataract surgery // J. Cataract Refract. Surg. 2010. Vol. 36. P. 1839–48. DOI: https://doi.org/10.1016/j.jcrs.2010.06.058
  85. Serrao S., Giannini D., Schiano-Lomoriello D. et al. New technique for femtosecond laser creation of clear corneal incisions for cataract surgery // J. Cataract Refract. Surg. 2017. Vol. 43. P. 80–86. DOI: https://doi.org/10.1016/j.jcrs.2016.08.038
  86. Piao J., Joo C.K. Site of clear corneal incision in cataract surgery and its effects on surgically induced astigmatism // Sci. Rep. 2020. Vol. 10. Article ID 3955. DOI: https://doi.org/10.1038/s41598-020-60985-5
  87. Marek R., Klus A., Pawlik R. Comparison of surgically induced astigmatism of temporal versus superior clear corneal incisions // Klin. Ocz. 2006. Vol. 108. P. 392–396.
  88. Hashemi H., Khabazkhoob M., Soroush S. et al. The location of incision in cataract surgery and its impact on induced astigmatism // Curr. Opin. Ophthalmol. 2016. Vol. 27. P. 58–64. DOI: https://doi.org/10.1097/ICU.0000000000000223
  89. Rho C.R., Joo C.K. Effects of steep meridian incision on corneal astigmatism in phacoemulsification cataract surgery // J. Cataract Refract. Surg. 2012. Vol. 38. P. 666–671. DOI: https://doi.org/10.1016/j.jcrs.2011.11.031
  90. Borasio E., Mehta J.S., Maurino V. Surgically induced astigmatism after phacoemulsification in eyes with mild to moderate corneal astigmatism: temporal versus on-axis clear corneal incisions // J. Cataract Refract. Surg. 2006. Vol. 32. P. 565–572. DOI: https://doi.org/10.1016/j.jcrs.2005.12.104
  91. Song W., Chen X., Wang W. Effect of steep meridian clear corneal incisions in phacoemulsification // Eur. J. Ophthalmol. 2015. Vol. 25. P. 422–425. DOI: https://doi.org/10.5301/ejo.5000575
  92. Bazzazi N., Barazandeh B., Kashani M., Rasouli M. Opposite clear corneal incisions versus steep meridian incision phacoemulsification for correction of pre-existing astigmatism // J. Ophthalmic Vis. Res. 2008. Vol. 3.
    P. 87–90.
  93. Lever J., Dahan E. Opposite clear corneal incisions to correct pre-existing astigmatism in cataract surgery // J. Cataract Refract. Surg. 2000. Vol. 26. P. 803–805. DOI: https://doi.org/10.1016/s0886-3350(00)00378-3
  94. Ren Y., Fang X., Fang A. et al. Phacoemulsification with 3.0 and 2.0 mm opposite clear corneal incisions for correction of corneal astigmatism // Cornea. 2019. Vol. 38. P. 1105–1110. DOI: https://doi.org/10.1097/ICO.0000000000001915
  95. Muller-Jensen K., Fischer P., Siepe U. Limbal relaxing incisions to correct astigmatism in clear corneal cataract surgery // J. Refract. Surg. 1999. Vol. 15. P. 586–589. DOI: https://doi.org/10.3928/1081-597X-19990901-12
  96. Abu-Ain M.S., Al-Latayfeh M.M., Khan M.I. Do limbal relaxing incisions during cataract surgery still have a role? // BMC Ophthalmol. 2022. Vol. 22. P. 102. DOI: https://doi.org/10.1186/s12886-022-02327-9
  97. Lindstrom R.L., Agapitos P.J., Koch D.D. Cataract surgery and astigmatic keratotomy // Int. Ophthalmol. Clin. 1994. Vol. 34. P. 145–164. DOI: https://doi.org/10.1097/00004397-199403420-00011
  98. Venter J., Blumenfeld R., Schallhorn S., Pelouskova M. Non-penetrating femtosecond laser intrastromal astigmatic keratotomy in patients with mixed astigmatism after previous refractive surgery // J. Refract. Surg. 2013. Vol. 29. P. 180–186. DOI: https://doi.org/10.3928/1081597X-20130129-09
  99. Hayashi K., Sato T., Yoshida M., Yoshimura K. Corneal shape changes of the total and posterior cornea after temporal versus nasal clear corneal incision cataract surgery // Br. J. Ophthalmol. 2019. Vol. 103. P. 181–185. DOI: https://doi.org/10.1136/bjophthalmol-2017-311710
  100. Yoon J.H., Kim K.H., Lee J.Y., Nam D.H. Surgically induced astigmatism after 3.0 mm temporal and nasal clear corneal incisions in bilateral cataract surgery // Indian J. Ophthalmol. 2013. Vol. 61. P. 645–648. DOI: https://doi.org/10.4103/0301-4738.119341
  101. Barequet I.S., Yu E., Vitale S. et al. Astigmatism outcomes of horizontal temporal versus nasal clear corneal incision cataract surgery // J. Cataract Refract. Surg. 2004. Vol. 30. P. 418–423. DOI: https://doi.org/10.1016/S0886-3350(03)00492-9
  102. Devgan U. Three rules for corneal phaco incisions. August 25 2017. URL: https://www.healio.com/news/ophthalmology/20170811/three-rules-forcorneal-phaco-incisions
  103. Wang L., Zhao L., Yang X. et al. Comparison of outcomes after phacoemulsification with two different corneal incision distances anterior to the limbus // J. Ophthalmol. 2019. Vol. 2019. Article ID 1760742. DOI: https://doi.org/10.1155/2019/1760742
  104. Camesasca F., Hendricks D., Dewey S. et al. Preferred keratome for the cataract incision // Cataract Refract. Surg. Today. April 2009. URL: https://crstoday.com/articles/2009-apr/crst0409_07-php
  105. Marshall J., Trokel S., Rothery S., Krueger R.R. A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser // Br. J. Ophthalmol. 1986. Vol. 70. P. 482–501. DOI: https://doi.org/10.1136/bjo.70.7.482
  106. Jacobi F.K., Dick H.B., Bohle R.M. Histological and ultrastructural study of corneal tunnel incisions using diamond and steel keratomes // J. Cataract Refract. Surg. 1998. Vol. 24. P. 498–502. DOI: https://doi.org/10.1016/s0886-3350(98)80291-5
  107. Zaki S., Zhang N., Gilchrist M.D. Electropolishing and shaping of micro-scale metallic features // Micromachines (Basel). 2022. Vol. 13. P. 468. DOI: https://doi.org/10.3390/mi13030468
  108. Raevis J., Astafurov K., Wilson B., Laudi J. Post-cataract surgery hyperreflective lesions within corneal incisions suspected to be silicone oil from disposable blades // J. Cataract Refract. Surg. 2020. Vol. 46. P. 975–978. DOI: https://doi.org/10.1097/j.jcrs.0000000000000208
  109. Raevis J., Astafurov K., Laudi J. Reply: Post-cataract surgery hyperreflective lesions within corneal incisions suspected to be silicone oil from disposable blades // J. Cataract Refract. Surg. 2021. Vol. 47. P. 282–283. DOI: https://doi.org/10.1097/j.jcrs.0000000000000565
  110. Osher R., Masket S., Lichtenstein S., Steinert R., Koch D. Reflective particles in the cataract incision // Cataract. Refract Surg. Today. 2005. (date of access September 14, 2020).
  111. Osher R.H. Comment on: post-cataract surgery hyperreflective lesions within corneal incisions suspected to be silicone oil from disposable blades // J. Cataract Refract. Surg. 2021. Vol. 47. P. 281–282. DOI: https://doi.org/10.1097/j.jcrs.0000000000000569
  112. Gupta A., Mercieca K., Fahad B., Biswas S. The effectiveness and safety of single-use disposable instruments in cataract surgery-a clinical study using a surgeon-based survey // J. Perioper. Pr. 2009. Vol. 19. P. 148–151. DOI: https://doi.org/10.1177/175045890901900404
  113. Elder M., Leaming D. The New Zealand cataract and refractive surgery survey 2001 // Clin. Exp. Ophthalmol. 2003. Vol. 31. P. 114–120. DOI: https://doi.org/10.1046/j.1442-9071.2003.00616.x
  114. Market Scope. 2020 IOL market report: mid-year update. Market Scope. August 28, 2020.
  115. Khor H.G., Cho I., Lee K., Chieng L.L. Waste production from phacoemulsification surgery // J. Cataract Refract. Surg. 2020. Vol. 46. P. 215–221. DOI: https://doi.org/10.1097/j.jcrs.0000000000000009
  116. Eisner G. Eye Surgery; an Introduction to Operative Technique. 2nd ed. Berlin: Springer-Verlag, 1990.
  117. Akura J., Funakoshi T., Kadonosono K., Saito M. Differences in incision shape based on the keratome bevel // J. Cataract Refract. Surg. 2001. Vol. 27. P. 761–765. DOI: https://doi.org/10.1016/s0886-3350(00)00743-4
  118. Kojima T., Kaga T., Watanabe M. et al. Clinical evaluation of the arched blade for cataract surgery // Acta Ophthalmol. Scand. 2005. Vol. 83. P. 306–311. DOI: https://doi.org/10.1111/j.1600-0420.2005.00419.x
  119. Liu D.T., Lee V.Y., Lam D.S. Clinical evaluation of the arched blade for cataract surgery // Acta Ophthalmol. Scand. 2006. Vol. 84. P. 559. DOI: https://doi.org/10.1111/j.1600-0420.2006.00661.x
  120. Ide T., O’Brien T.P. Experimental model for analyzing cutting resistance by various knives for cataract surgery // Clin. Exp. Ophthalmol. 2010. Vol. 38. P. 292–299. DOI: https://doi.org/10.1111/j.1442-9071.2010.02237.x
  121. Donnenfeld E., Rosenberg E., Boozan H. et al. Randomized prospective evaluation of the wound integrity of primary clear corneal incisions made with a femtosecond laser versus a manual keratome // J. Cataract Refract. Surg. 2018. Vol. 44. P. 329–335. DOI: https://doi.org/10.1016/j.jcrs.2017.12.026
  122. Benard-Seguin É., Bostan C., Fadous R. et al. Optimization of femtosecond laser-constructed clear corneal wound sealability for cataract surgery // J. Cataract Refract. Surg. 2020. Vol. 46. P. 1611–1617. DOI: https://doi.org/10.1097/j.jcrs.0000000000000336
  123. Mayer W.J., Klaproth O.K., Hengerer F.H. et al. In vitro immunohistochemical and morphological observations of penetrating corneal incisions created by a femtosecond laser used for assisted intraocular lens surgery // J. Cataract Refract. Surg. 2014. Vol. 40. P. 632–638. DOI: https://doi.org/10.1016/j.jcrs.2014.02.015
  124. Cendelin J., Rusnak S., Hecova L. Intraoperative optical coherence tomography analysis of clear corneal incision: effect of the lateral stromal hydration // J. Ophthalmol. 2020. Vol. 2020. Article ID 8490181.
  125. Calladine D., Tanner V. Optical coherence tomography of the effects of stromal hydration on clear corneal incision architecture // J. Cataract Refract. Surg. 2009. Vol. 35. P. 1367–1371.
  126. Chee S.P., Ti S.E., Lim L. et al. Anterior segment optical coherence tomography evaluation of the integrity of clear corneal incisions: a comparison between 2.2-mm and 2.65-mm main incisions // Am. J. Ophthalmol. 2010. Vol. 149. P. 768–776.
  127. Agarwal A., Kumar D.A., Jacob S., Agarwal A. In vivo analysis of wound architecture in 700 microm microphakonit cataract surgery // J. Cataract Refract. Surg. 2008. Vol. 34. P. 1554–1560.

Для продолжения работы требуется вход / регистрация