Справка
x
только для медицинских специалистов
Консультант врача
Электронная медицинская библиотека
Вход / регистрация
Доступ к библиотеке
Версия для слабовидящих
Каталог
В книге
Показать все
Расширенный поиск
К результату поиска
Меню
Библиотека
Все книги
Руководства
Рекомендации
Монографии
Основные учебники
Атласы
Пациентам
Фармакология
Образование
Вопросы по НМО
Модули
Расписание вебинаров
Прошедшие вебинары
Интервью
Мероприятия
Мероприятия
Лекарства
Справочник
Раздел
22
/
22
Страница
1
/
1
Список литературы
/
/
Davis G. The evolution of cataract surgery // Mol. Med. 2016. Vol. 113. P. 58–62.
Fine I.H. Architecture and construction of a self-sealing incision for cataract surgery // J. Cataract Refract. Surg. 1991. Vol. 17. Suppl. P. 672–676. DOI: https://doi.org/10.1016/s0886-3350(13)80682-7
Fine H., Packer M., Hoffman R. Chapter 2: Surgical techniques for small incision cataract surgery // Essentials in Ophthalmology, Cataract and Refractive Surgery / Eds T. Kohnen, D.D. Koch. Springer, 2005. P. 19–34.
Leaming D.V. Practice styles and preferences of ASCRS members-1992 survey. American Society of Cataract and Refractive Surgeons // J. Cataract Refract. Surg. 1993. Vol. 19. P. 600–606. DOI: https://doi.org/10.1016/s0886-3350(13)80007-7
Leaming D.V. Practice styles and preferences of ASCRS members-1995 survey // J. Cataract Refract. Surg. 1996. Vol. 22. P. 931–939. DOI: https://doi.org/10.1016/s0886-3350(96)80194-5
Leaming D.V. Practice styles and preferences of ASCRS members-2000 survey. American Society of Cataract and Refractive Surgery // J. Cataract Refract. Surg. 2001. Vol. 27. P. 948–955. DOI: https://doi.org/10.1016/s0886-3350(01)00905-1
Leaming D.V. Practice styles and preferences of ASCRS members-2003 survey // J. Cataract Refract. Surg. 2004. Vol. 30. P. 892–900. DOI: https://doi.org/10.1016/j.jcrs.2004.02.064
Freeman W. Ophthalmic comprehensive reports. 2021 single-use ophthalmic surgical products market report: global analysis for 2020 to 2026. Market Scope, September, 2021. URL: https://www.market-scope.com/pages/reports/354/2022-ophthalmic-surgicalinstruments-market-report-global-analysis-for-2021-to-2027-november-2022
Fine I.H. Clear corneal incisions // Int. Ophthalmol. Clin. 1994. Vol. 34. P. 59–72. DOI: https://doi.org/10.1097/00004397-199403420-00005
Elkady B., Pinero D., Alio J.L. Corneal incision quality: microincision cataract surgery versus microcoaxial phacoemulsification // J. Cataract Refract. Surg. 2009. Vol. 35. P. 466–474. DOI: https://doi.org/10.1016/j.jcrs.
2008.11.047
Dewey S., Beiko G., Braga-Mele R. et al. Microincisions in cataract surgery // J. Cataract Refract. Surg. 2014. Vol. 40. P. 1549–1557. DOI: https://doi.org/10.1016/j.jcrs.2014.07.006
Lyles G.W., Cohen K.L., Lam D. OCT-documented incision features and natural history of clear corneal incisions used for bimanual microincision cataract surgery // Cornea. 2011. Vol. 30. P. 681–686. DOI: https://doi.org/10.1097/ICO.0b013e31820128bb
Teixeira A., Salaroli C., Filho F.R. et al. Architectural analysis of clear corneal incision techniques in cataract surgery using Fourier-domain OCT // Ophthalmic Surg. Lasers Imaging. 2012. Vol. 43. P. S103–S108. DOI: https://doi.org/10.3928/15428877-20121003-02
Torres L.F., Saez-Espinola F., Colina J.M. et al. In vivo architectural analysis of 3.2 mm clear corneal incisions for phacoemulsification using optical coherence tomography // J. Cataract Refract. Surg. 2006. Vol. 32. P. 1820–1826. DOI: https://doi.org/10.1016/j.jcrs.2006.06.020
Calladine D. Optical coherence tomography studies of clear corneal incision wound architecture // J. Cataract Refract. Surg. 2011. Vol. 37. P. 1375. DOI: https://doi.org/10.1016/j.jcrs.2011.05.002
Calladine D., Packard R. Clear corneal incision architecture in the immediate postoperative period evaluated using optical coherence tomography // J. Cataract Refract. Surg. 2007. Vol. 33. P. 1429–1435. DOI: https://doi.org/10.1016/j.jcrs.2007.04.011
Li S.S., Misra S.L., Wallace H.B., McKelvie J. Effect of phacoemulsification incision size on incision repair and remodeling: optical coherence tomography assessment // J. Cataract Refract. Surg. 2018. Vol. 44. P. 1336–1343. DOI: https://doi.org/10.1016/j.jcrs.2018.07.025
Dupont-Monod S., Labbe A., Fayol N. et al. In vivo architectural analysis of clear corneal incisions using anterior segment optical coherence tomography // J. Cataract Refract. Surg. 2009. Vol. 35. P. 444–450. DOI: https://doi.org/10.1016/j.jcrs.2008.11.034
Fine I.H., Hoffman R.S., Packer M. Profile of clear corneal cataract incisions demonstrated by ocular coherence tomography // J. Cataract Refract. Surg. 2007. Vol. 33. P. 94–97. DOI: https://doi.org/10.1016/j.jcrs.2006.09.016
Schallhorn J.M., Tang M., Li Y. et al. Optical coherence tomography of clear corneal incisions for cataract surgery // J. Cataract Refract. Surg. 2008. Vol. 34. P. 1561–1565. DOI: https://doi.org/10.1016/j.jcrs.2008.05.026
Tan Q.Q., Tian J., Liao X. et al. Impact of different clear corneal incision sizes on anterior corneal aberration for cataract surgery // Arq. Bras. Oftalmol. Vol. 2020. Vol. 83. P. 478–484. DOI: https://doi.org/10.5935/0004-2749.20200089
He Q., Huang J., He X. et al. Effect of corneal incision features on anterior and posterior corneal astigmatism and higher-order aberrations after cataract surgery // Acta Ophthalmol. 2021. Vol. 99. P. e1027–e1040. DOI: https://doi.org/10.1111/aos.14778
Li X., Chen X., He S., Xu W. Effect of 1.8-mm steep-axis clear corneal incision on the posterior corneal astigmatism in candidates for toric IOL implantation // BMC Ophthalmol. 2020. Vol. 20. P. 187. DOI: https://doi.org/10.1186/s12886-020-01456-3
Hayashi K., Yoshida M., Hirata A., Yoshimura K. Changes in shape and astigmatism of total, anterior, and posterior cornea after long versus short clear corneal incision cataract surgery // J. Cataract Refract. Surg. 2018. Vol. 44. P. 39–49. DOI: https://doi.org/10.1016/j.jcrs.2017.10.037
Al Mahmood A.M., Al-Swailem S.A., Behrens A. Clear corneal incision in cataract surgery // Middle East Afr. J. Ophthalmol. 2014. Vol. 21. P. 25–31. DOI: https://doi.org/10.4103/0974-9233.124084
Mastropasqua L., Toto L., Mastropasqua A. et al. Femtosecond laser versus manual clear corneal incision in cataract surgery // J. Refract. Surg. 2014. Vol. 30. P. 27–33. DOI: https://doi.org/10.3928/1081597x-20131217-03
Grewal D.S., Basti S. Comparison of morphologic features of clear corneal incisions created with a femtosecond laser or a keratome // J. Cataract Refract. Surg. 2014. Vol. 40. P. 521–530. DOI: https://doi.org/10.1016/j.jcrs.2013.11.028
Ferreira T.B., Ribeiro F.J., Pinheiro J. et al. Comparison of surgically induced astigmatism and morphologic features resulting from femtosecond laser and manual clear corneal incisions for cataract surgery // J. Refract. Surg. 2018. Vol. 34. P. 322–329. DOI: https://doi.org/10.3928/1081597X-20180301-01
Dick H.B., Schwenn O., Krummenauer F. et al. Inflammation after sclerocorneal versus clear corneal tunnel phacoemulsification // Ophthalmology. 2000. Vol. 107. P. 241–247. DOI: https://doi.org/10.1016/s0161-6420(99)00082-2
Crandall A.S. Anesthesia modalities for cataract surgery // Curr. Opin. Ophthalmol. 2001. Vol. 12. P. 9–11. DOI: https://doi.org/10.1097/00055735-200102000-00003
Nikose A.S., Saha D., Laddha P.M., Patil M. Surgically induced astigmatism after phacoemulsification by temporal clear corneal and superior clear corneal approach: a comparison // Clin. Ophthalmol. 2018. Vol. 12. P. 65–70. DOI: https://doi.org/10.2147/OPTH.S149709
Tejedor J., Murube J. Choosing the location of corneal incision based on preexisting astigmatism in phacoemulsification // Am. J. Ophthalmol. 2005. Vol. 139. P. 767–776. DOI: https://doi.org/10.1016/j.ajo.2004.12.057
Taban M., Behrens A., Newcomb R.L. et al. Acute endophthalmitis following cataract surgery: a systematic review of the literature // Arch. Ophthalmol. 2005. Vol. 123. P. 613–620. DOI: https://doi.org/10.1001/archopht.123.5.613
Cao H., Zhang L., Li L., Lo S. Risk factors for acute endophthalmitis following cataract surgery: a systematic review and meta-analysis // PLoS One. 2013. Vol. 8. Article ID e71731. DOI: https://doi.org/10.1371/journal.pone.0071731
West E.S., Behrens A., McDonnell P.J. et al. The incidence of endophthalmitis after cataract surgery among the U.S. Medicare population increased between 1994 and 2001 // Ophthalmology. 2005. Vol. 112. P. 1388–1394. DOI: https://doi.org/10.1016/j.ophtha.2005.02.028
Colleaux K.M., Hamilton W.K. Effect of prophylactic antibiotics and incision type on the incidence of endophthalmitis after cataract surgery // Can. J. Ophthalmol. 2000. Vol. 35. P. 373–378. DOI: https://doi.org/10.1016/s0008-4182(00)80124-6
Lundstrom M., Wejde G., Stenevi U. et al. Endophthalmitis after cataract surgery: a nationwide prospective study evaluating incidence in relation to incision type and location // Ophthalmology. 2007. Vol. 114. P. 866–870. DOI: https://doi.org/10.1016/j.ophtha.2006.11.025
Oshika T., Hatano H., Kuwayama Y. et al. Incidence of endophthalmitis after cataract surgery in Japan // Acta Ophthalmol. Scand. 2007. Vol. 85. P. 848–851. DOI: https://doi.org/10.1111/j.1600-0420.2007.00932.x
Miller J.J., Scott I.U., Flynn H.W. Jr et al. Acute-onset endophthalmitis after cataract surgery (2000–2004): incidence, clinical settings, and visual acuity outcomes after treatment // Am. J. Ophthalmol. 2005. Vol. 139. P. 983–987. DOI: https://doi.org/10.1016/j.ajo.2005.01.025
Krummenauer F., Kurz S., Dick H.B. Epidemiological and health economical evaluation of intraoperative antibiosis as a protective agent against endophthalmitis after cataract surgery // Eur. J. Med. Res. 2005. Vol. 10. P. 71–75.
Ng J.Q., Morlet N., Bulsara M.K., Semmens J.B. Reducing the risk for endophthalmitis after cataract surgery: population-based nested case-control study: endophthalmitis population study of Western Australia sixth report // J. Cataract Refract. Surg. 2007. Vol. 33. P. 269–280. DOI: https://doi.org/10.1016/j.jcrs.2006.10.067
Khanna R.C., Ray V.P., Latha M. et al. Risk factors for endophthalmitis following cataract surgery-our experience at a tertiary eye care centre in India // Int. J. Ophthalmol. 2015. Vol. 8. P. 1184–1189. DOI: https://doi.org/10.3980/j.issn.2222-3959.2015.06.19
Monica M.L., Long D.A. Nine-year safety with self-sealing corneal tunnel incision in clear cornea cataract surgery // Ophthalmology. 2005. Vol. 112. P. 985–986. DOI: https://doi.org/10.1016/j.ophtha.2004.12.030
Nichamin L.D., Chang D.F., Johnson S.H. et al. ASCRS white paper: what is the association between clear corneal cataract incisions and postoperative endophthalmitis? // J. Cataract Refract. Surg. 2006. Vol. 32. P. 1556–1559. DOI: https://doi.org/10.1016/j.jcrs.2006.07.009
Pershing S., Lum F., Hsu S. et al. Endophthalmitis after cataract surgery in the United States: a report from the intelligent research in sight registry, 2013–2017 // Ophthalmology. 2020. Vol. 127. P. 151–158. DOI: https://doi.org/10.1016/j.ophtha.2019.08.026
Friling E., Johansson B., Lundstrom M., Montan P. Postoperative endophthalmitis in immediate sequential bilateral cataract surgery: a nationwide registry study // Ophthalmology. 2022. Vol. 129. P. 26–34. DOI: https://doi.org/10.1016/j.ophtha.2021.07.007
Zafar S., Dun C., Srikumaran D. et al. Endophthalmitis rates among Medicare beneficiaries undergoing cataract surgery between 2011 and 2019 // Ophthalmology. 2022. Vol. 129. P. 250–257. DOI: https://doi.org/10.1016/j.ophtha.2021.09.004
Shi S.L., Yu X.N., Cui Y.L. et al. Incidence of endophthalmitis after phacoemulsification cataract surgery: a meta-analysis // Int. J. Ophthalmol. 2022. Vol. 15. P. 327–335. DOI: https://doi.org/10.18240/ijo.2022.02.20
Kim M.E., Kim D.B. Cataract incision-related corneal erosion: recurrent corneal erosion because of clear corneal cataract surgery // J. Cataract Refract. Surg. 2020. Vol. 46. P. 1436–1440. DOI: https://doi.org/10.1097/j.jcrs.0000000000000345
Olsen T., Dam-Johansen M., Bek T., Hjortdal J.O. Corneal versus scleral tunnel incision in cataract surgery: a randomized study // J. Cataract Refract. Surg. 1997. Vol. 23. P. 337–341. DOI: https://doi.org/10.1016/s0886-3350(97)80176-9
Marcon A.S., Rapuano C.J., Jones M.R. et al. Descemet’s membrane detachment after cataract surgery: management and outcome // Ophthalmology. 2002. Vol. 109. P. 2325–2330. DOI: https://doi.org/10.1016/s0161-6420(02)01288-5
Singhal D., Sahay P., Goel S. et al. Descemet membrane detachment // Surv. Ophthalmol. 2020. Vol. 65. P. 279–93. DOI: https://doi.org/10.1016/j.survophthal.2019.12.006
May W., Castro-Combs J., Camacho W. et al. Analysis of clear corneal incision integrity in an ex vivo model // J. Cataract Refract. Surg. 2008. Vol. 34. P. 1013–1018. DOI: https://doi.org/10.1016/j.jcrs.2008.01.038
Masket S., Belani S. Proper wound construction to prevent short-term ocular hypotony after clear corneal incision cataract surgery // J. Cataract Refract. Surg. 2007. Vol. 33. P. 383–386. DOI: https://doi.org/10.1016/j.jcrs.2006.11.006
Kim K.H., Kim W.S. Aniridia after blunt trauma and presumed wound dehiscence in a pseudophakic eye // Arq. Bras. Oftalmol. 2016. Vol. 79. P. 44–45. DOI: https://doi.org/10.5935/0004-2749.20160013
Beltrame G., Salvetat M.L., Driussi G., Chizzolini M. Effect of incision size and site on corneal endothelial changes in cataract surgery // J. Cataract Refract. Surg. 2002. Vol. 28. P. 118–125. DOI: https://doi.org/10.1016/s0886-3350(01)00983-x
Kohnen T., Lambert R.J., Koch D.D. Incision sizes for foldable intraocular lenses // Ophthalmology. 1997. Vol. 104. P. 1277–1286. DOI: https://doi.org/10.1016/s0161-6420(97)30147-x
Ernest P., Tipperman R., Eagle R. et al. Is there a difference in incision healing based on location? // J. Cataract Refract. Surg. 1998. Vol. 24. P. 482–486. DOI: https://doi.org/10.1016/s0886-3350(98)80288-5
Liu J., Wolfe P., Hernandez V., Kohnen T. Comparative assessment of the corneal incision enlargement of 4 preloaded IOL delivery systems // J. Cataract Refract. Surg. 2020. Vol. 46. P. 1041–1046. DOI: https://doi.org/10.1097/j.jcrs.0000000000000214
Cennamo M., Favuzza E., Salvatici M.C. et al. Effect of manual, preloaded, and automated preloaded injectors on corneal incision architecture after IOL implantation // J. Cataract Refract. Surg. 2020. Vol. 46. P. 1374–1380. DOI: https://doi.org/10.1097/j.jcrs.0000000000000295
Arboleda A., Arrieta E., Aguilar M.C. et al. Variations in intraocular lens injector dimensions and corneal incision architecture after cataract surgery // J. Cataract Refract. Surg. 2019. Vol. 45. P. 656–661. DOI: https://doi.org/10.1016/j.jcrs.2018.10.047
Packard R. OCT analysis of clear corneal incision width over time. Presented at the ASCRS Meeting, San Diego, March 25–29, 2011.
Berdahl J.P., DeStafeno J.J., Kim T. Corneal wound architecture and integrity after phacoemulsification evaluation of coaxial, microincision coaxial, and microincision bimanual techniques // J. Cataract Refract. Surg. 2007. Vol. 33. P. 510–515. DOI: https://doi.org/10.1016/j.jcrs.2006.11.012
Vasavada V., Vasavada A.R., Vasavada V.A. et al. Incision integrity and postoperative outcomes after microcoaxial phacoemulsification performed using 2 incision-dependent systems // J. Cataract Refract. Surg. 2013. Vol. 39. P. 563–571. DOI: https://doi.org/10.1016/j.jcrs.2012.11.018
Kurz S., Krummenauer F., Gabriel P. et al. Biaxial microincision versus coaxial small-incision clear cornea cataract surgery // Ophthalmology. 2006. Vol. 113. P. 1818–1826. DOI: https://doi.org/10.1016/j.ophtha.2006.05.013
Cavallini G.M., Campi L., Torlai G. et al. Clear corneal incisions in bimanual microincision cataract surgery: long-term wound-healing architecture // J. Cataract Refract. Surg. 2012. Vol. 38. P. 1743–1748. DOI: https://doi.org/10.1016/j.jcrs.2012.05.044
Wilczynski M., Supady E., Loba P., Synder A. et al. Comparison of early corneal endothelial cell loss after coaxial phacoemulsification through 1.8 mm microincision and bimanual phacoemulsification through 1.7 mm microincision // J. Cataract Refract. Surg. 2009. Vol. 35. P. 1570–1574. DOI: https://doi.org/10.1016/j.jcrs.2009.05.014
Cavallini G.M., Verdina T., De Maria M. et al. Bimanual microincision cataract surgery with implantation of the new Incise((R)) MJ14 intraocular lens through a 1.4 mm incision // Int. J. Ophthalmol. 2017. Vol. 10. P. 1710–1715. DOI: https://doi.org/10.18240/ijo.2017.11.12
Borkenstein A.F., Borkenstein E.M. Geometry of acrylic, hydrophobic IOLs and changes in haptic-capsular bag relationship according to compression and different well diameters: a bench study using computed tomography // Ophthalmol. Ther. 2022. Vol. 11. P. 711–727. DOI: https://doi.org/10.1007/s40123-022-00469-z
Masket S., Wang L., Belani S. Induced astigmatism with 2.2- and 3.0-mm coaxial phacoemulsification incisions // J. Refract. Surg. 2009. Vol. 25. P. 21–24. DOI: https://doi.org/10.3928/1081597X-20090101-04
Yu Y.B., Zhu Y.N., Wang W. et al. A comparable study of clinical and optical outcomes after 1.8, 2.0 mm microcoaxial and 3.0 mm coaxial cataract surgery // Int. J. Ophthalmol. 2016. Vol. 9. P. 399–405. DOI: https://doi.org/10.18240/ijo.2016.03.13
Febbraro J.L., Wang L., Borasio E. et al. Astigmatic equivalence of 2.2-mm and 1.8-mm superior clear corneal cataract incision // Graefes Arch. Clin. Exp. Ophthalmol. 2015. Vol. 253. P. 261–265. DOI: https://doi.org/10.1007/s00417-014-2854-5
Tagawa K., Higashide T., Sugiyama K., Kawasaki K. Surgically induced astigmatism after micro and small clear temporal corneal incision in cataract surgery // Nippon Ganka Gakkai Zasshi. 2007. Vol. 111. P. 716–721.
Yang J., Wang X., Zhang H. et al. Clinical evaluation of surgery-induced astigmatism in cataract surgery using 2.2 mm or 1.8 mm clear corneal microincisions // Int. J. Ophthalmol. 2017. Vol. 10. P. 68–71. DOI: https://doi.org/10.18240/ijo.2017.01.11
Menda S.A., Chen M., Naseri A. Technique for shortening a long clear corneal incision // Arch. Ophthalmol. 2012. Vol. 130. P. 1589–1590. DOI: https://doi.org/10.1001/archophthalmol.2012.2536
Ernest P.H., Lavery K.T., Kiessling L.A. Relative strength of scleral corneal and clear corneal incisions constructed in cadaver eyes // J. Cataract Refract. Surg. 1994. Vol. 20. P. 626–629. DOI: https://doi.org/10.1016/s0886-3350(13)80651-7
Wilczynski M., Supady E., Wierzchowski T. et al. The effect of corneal tunnel length in patients after standard phacoemulsification through a 2.75 mm incision on surgically induced astigmatism, corneal thickness and endothelial cell density // Klin. Ocz. 2016. Vol. 117. P. 236–242.
Sonmez S., Karaca C. The effect of tunnel length and position on postoperative corneal astigmatism: an optical coherence tomographic study // Eur. J. Ophthalmol. 2020. Vol. 30. P. 104–111. DOI: https://doi.org/10.1177/1120672118805875
Taban M., Rao B., Reznik J. et al. Dynamic morphology of sutureless cataract wounds-effect of incision angle and location // Surv. Ophthalmol. 2004. Vol. 49. P. S62–S72. DOI: https://doi.org/10.1016/j.survophthal.2004.01.003
Rao B., Zhang J., Taban M. et al. Imaging and investigating the effects of incision angle of clear corneal cataract surgery with optical coherence tomography // Opt. Express. 2003. Vol. 11. P. 3254–3261. DOI: https://doi.org/10.1364/oe.11.003254
May W.N., Castro-Combs J., Quinto G.G. et al. Standardized Seidel test to evaluate different sutureless cataract incision con-figurations // J. Cataract Refract. Surg. 2010. Vol. 36. P. 1011–1017. DOI: https://doi.org/10.1016/j.jcrs.2009.12.036
Friedman N. Cataract incisions: wound construction // Opthalmology Web. July 2009. URL: https://www.ophthalmologyweb.com/Featured-Articles/19922-Cataract-Incisions-Wound-Construction
Teuma E.V., Bott S., Edelhauser H.F. Sealability of ultrashort-pulse laser and manually generated full-thickness clear corneal incisions // J. Cataract Refract. Surg. 2014. Vol. 40. P. 460–468. DOI: https://doi.org/10.1016/j.jcrs.2013.08.059
Calladine D., Ward M., Packard R. Adherent ocular bandage for clear corneal incisions used in cataract surgery // J. Cataract Refract. Surg. 2010. Vol. 36. P. 1839–48. DOI: https://doi.org/10.1016/j.jcrs.2010.06.058
Serrao S., Giannini D., Schiano-Lomoriello D. et al. New technique for femtosecond laser creation of clear corneal incisions for cataract surgery // J. Cataract Refract. Surg. 2017. Vol. 43. P. 80–86. DOI: https://doi.org/10.1016/j.jcrs.2016.08.038
Piao J., Joo C.K. Site of clear corneal incision in cataract surgery and its effects on surgically induced astigmatism // Sci. Rep. 2020. Vol. 10. Article ID 3955. DOI: https://doi.org/10.1038/s41598-020-60985-5
Marek R., Klus A., Pawlik R. Comparison of surgically induced astigmatism of temporal versus superior clear corneal incisions // Klin. Ocz. 2006. Vol. 108. P. 392–396.
Hashemi H., Khabazkhoob M., Soroush S. et al. The location of incision in cataract surgery and its impact on induced astigmatism // Curr. Opin. Ophthalmol. 2016. Vol. 27. P. 58–64. DOI: https://doi.org/10.1097/ICU.0000000000000223
Rho C.R., Joo C.K. Effects of steep meridian incision on corneal astigmatism in phacoemulsification cataract surgery // J. Cataract Refract. Surg. 2012. Vol. 38. P. 666–671. DOI: https://doi.org/10.1016/j.jcrs.2011.11.031
Borasio E., Mehta J.S., Maurino V. Surgically induced astigmatism after phacoemulsification in eyes with mild to moderate corneal astigmatism: temporal versus on-axis clear corneal incisions // J. Cataract Refract. Surg. 2006. Vol. 32. P. 565–572. DOI: https://doi.org/10.1016/j.jcrs.2005.12.104
Song W., Chen X., Wang W. Effect of steep meridian clear corneal incisions in phacoemulsification // Eur. J. Ophthalmol. 2015. Vol. 25. P. 422–425. DOI: https://doi.org/10.5301/ejo.5000575
Bazzazi N., Barazandeh B., Kashani M., Rasouli M. Opposite clear corneal incisions versus steep meridian incision phacoemulsification for correction of pre-existing astigmatism // J. Ophthalmic Vis. Res. 2008. Vol. 3.
P. 87–90.
Lever J., Dahan E. Opposite clear corneal incisions to correct pre-existing astigmatism in cataract surgery // J. Cataract Refract. Surg. 2000. Vol. 26. P. 803–805. DOI: https://doi.org/10.1016/s0886-3350(00)00378-3
Ren Y., Fang X., Fang A. et al. Phacoemulsification with 3.0 and 2.0 mm opposite clear corneal incisions for correction of corneal astigmatism // Cornea. 2019. Vol. 38. P. 1105–1110. DOI: https://doi.org/10.1097/ICO.0000000000001915
Muller-Jensen K., Fischer P., Siepe U. Limbal relaxing incisions to correct astigmatism in clear corneal cataract surgery // J. Refract. Surg. 1999. Vol. 15. P. 586–589. DOI: https://doi.org/10.3928/1081-597X-19990901-12
Abu-Ain M.S., Al-Latayfeh M.M., Khan M.I. Do limbal relaxing incisions during cataract surgery still have a role? // BMC Ophthalmol. 2022. Vol. 22. P. 102. DOI: https://doi.org/10.1186/s12886-022-02327-9
Lindstrom R.L., Agapitos P.J., Koch D.D. Cataract surgery and astigmatic keratotomy // Int. Ophthalmol. Clin. 1994. Vol. 34. P. 145–164. DOI: https://doi.org/10.1097/00004397-199403420-00011
Venter J., Blumenfeld R., Schallhorn S., Pelouskova M. Non-penetrating femtosecond laser intrastromal astigmatic keratotomy in patients with mixed astigmatism after previous refractive surgery // J. Refract. Surg. 2013. Vol. 29. P. 180–186. DOI: https://doi.org/10.3928/1081597X-20130129-09
Hayashi K., Sato T., Yoshida M., Yoshimura K. Corneal shape changes of the total and posterior cornea after temporal versus nasal clear corneal incision cataract surgery // Br. J. Ophthalmol. 2019. Vol. 103. P. 181–185. DOI: https://doi.org/10.1136/bjophthalmol-2017-311710
Yoon J.H., Kim K.H., Lee J.Y., Nam D.H. Surgically induced astigmatism after 3.0 mm temporal and nasal clear corneal incisions in bilateral cataract surgery // Indian J. Ophthalmol. 2013. Vol. 61. P. 645–648. DOI: https://doi.org/10.4103/0301-4738.119341
Barequet I.S., Yu E., Vitale S. et al. Astigmatism outcomes of horizontal temporal versus nasal clear corneal incision cataract surgery // J. Cataract Refract. Surg. 2004. Vol. 30. P. 418–423. DOI: https://doi.org/10.1016/S0886-3350(03)00492-9
Devgan U. Three rules for corneal phaco incisions. August 25 2017. URL: https://www.healio.com/news/ophthalmology/20170811/three-rules-forcorneal-phaco-incisions
Wang L., Zhao L., Yang X. et al. Comparison of outcomes after phacoemulsification with two different corneal incision distances anterior to the limbus // J. Ophthalmol. 2019. Vol. 2019. Article ID 1760742. DOI: https://doi.org/10.1155/2019/1760742
Camesasca F., Hendricks D., Dewey S. et al. Preferred keratome for the cataract incision // Cataract Refract. Surg. Today. April 2009. URL: https://crstoday.com/articles/2009-apr/crst0409_07-php
Marshall J., Trokel S., Rothery S., Krueger R.R. A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser // Br. J. Ophthalmol. 1986. Vol. 70. P. 482–501. DOI: https://doi.org/10.1136/bjo.70.7.482
Jacobi F.K., Dick H.B., Bohle R.M. Histological and ultrastructural study of corneal tunnel incisions using diamond and steel keratomes // J. Cataract Refract. Surg. 1998. Vol. 24. P. 498–502. DOI: https://doi.org/10.1016/s0886-3350(98)80291-5
Zaki S., Zhang N., Gilchrist M.D. Electropolishing and shaping of micro-scale metallic features // Micromachines (Basel). 2022. Vol. 13. P. 468. DOI: https://doi.org/10.3390/mi13030468
Raevis J., Astafurov K., Wilson B., Laudi J. Post-cataract surgery hyperreflective lesions within corneal incisions suspected to be silicone oil from disposable blades // J. Cataract Refract. Surg. 2020. Vol. 46. P. 975–978. DOI: https://doi.org/10.1097/j.jcrs.0000000000000208
Raevis J., Astafurov K., Laudi J. Reply: Post-cataract surgery hyperreflective lesions within corneal incisions suspected to be silicone oil from disposable blades // J. Cataract Refract. Surg. 2021. Vol. 47. P. 282–283. DOI: https://doi.org/10.1097/j.jcrs.0000000000000565
Osher R., Masket S., Lichtenstein S., Steinert R., Koch D. Reflective particles in the cataract incision // Cataract. Refract Surg. Today. 2005. (date of access September 14, 2020).
Osher R.H. Comment on: post-cataract surgery hyperreflective lesions within corneal incisions suspected to be silicone oil from disposable blades // J. Cataract Refract. Surg. 2021. Vol. 47. P. 281–282. DOI: https://doi.org/10.1097/j.jcrs.0000000000000569
Gupta A., Mercieca K., Fahad B., Biswas S. The effectiveness and safety of single-use disposable instruments in cataract surgery-a clinical study using a surgeon-based survey // J. Perioper. Pr. 2009. Vol. 19. P. 148–151. DOI: https://doi.org/10.1177/175045890901900404
Elder M., Leaming D. The New Zealand cataract and refractive surgery survey 2001 // Clin. Exp. Ophthalmol. 2003. Vol. 31. P. 114–120. DOI: https://doi.org/10.1046/j.1442-9071.2003.00616.x
Market Scope. 2020 IOL market report: mid-year update. Market Scope. August 28, 2020.
Khor H.G., Cho I., Lee K., Chieng L.L. Waste production from phacoemulsification surgery // J. Cataract Refract. Surg. 2020. Vol. 46. P. 215–221. DOI: https://doi.org/10.1097/j.jcrs.0000000000000009
Eisner G. Eye Surgery; an Introduction to Operative Technique. 2nd ed. Berlin: Springer-Verlag, 1990.
Akura J., Funakoshi T., Kadonosono K., Saito M. Differences in incision shape based on the keratome bevel // J. Cataract Refract. Surg. 2001. Vol. 27. P. 761–765. DOI: https://doi.org/10.1016/s0886-3350(00)00743-4
Kojima T., Kaga T., Watanabe M. et al. Clinical evaluation of the arched blade for cataract surgery // Acta Ophthalmol. Scand. 2005. Vol. 83. P. 306–311. DOI: https://doi.org/10.1111/j.1600-0420.2005.00419.x
Liu D.T., Lee V.Y., Lam D.S. Clinical evaluation of the arched blade for cataract surgery // Acta Ophthalmol. Scand. 2006. Vol. 84. P. 559. DOI: https://doi.org/10.1111/j.1600-0420.2006.00661.x
Ide T., O’Brien T.P. Experimental model for analyzing cutting resistance by various knives for cataract surgery // Clin. Exp. Ophthalmol. 2010. Vol. 38. P. 292–299. DOI: https://doi.org/10.1111/j.1442-9071.2010.02237.x
Donnenfeld E., Rosenberg E., Boozan H. et al. Randomized prospective evaluation of the wound integrity of primary clear corneal incisions made with a femtosecond laser versus a manual keratome // J. Cataract Refract. Surg. 2018. Vol. 44. P. 329–335. DOI: https://doi.org/10.1016/j.jcrs.2017.12.026
Benard-Seguin É., Bostan C., Fadous R. et al. Optimization of femtosecond laser-constructed clear corneal wound sealability for cataract surgery // J. Cataract Refract. Surg. 2020. Vol. 46. P. 1611–1617. DOI: https://doi.org/10.1097/j.jcrs.0000000000000336
Mayer W.J., Klaproth O.K., Hengerer F.H. et al. In vitro immunohistochemical and morphological observations of penetrating corneal incisions created by a femtosecond laser used for assisted intraocular lens surgery // J. Cataract Refract. Surg. 2014. Vol. 40. P. 632–638. DOI: https://doi.org/10.1016/j.jcrs.2014.02.015
Cendelin J., Rusnak S., Hecova L. Intraoperative optical coherence tomography analysis of clear corneal incision: effect of the lateral stromal hydration // J. Ophthalmol. 2020. Vol. 2020. Article ID 8490181.
Calladine D., Tanner V. Optical coherence tomography of the effects of stromal hydration on clear corneal incision architecture // J. Cataract Refract. Surg. 2009. Vol. 35. P. 1367–1371.
Chee S.P., Ti S.E., Lim L. et al. Anterior segment optical coherence tomography evaluation of the integrity of clear corneal incisions: a comparison between 2.2-mm and 2.65-mm main incisions // Am. J. Ophthalmol. 2010. Vol. 149. P. 768–776.
Agarwal A., Kumar D.A., Jacob S., Agarwal A. In vivo analysis of wound architecture in 700 microm microphakonit cataract surgery // J. Cataract Refract. Surg. 2008. Vol. 34. P. 1554–1560.
Для продолжения работы требуется
вход / регистрация
Читать в приложении
Техника роговичного разреза в хирургии катаракты
Оглавление
Авторы
Предисловие
Список сокращений
Введение
Эволюция роговичного разреза от первого прокола до фемтолазерного разреза
Структура разреза роговицы
Положение разреза роговицы
Форма раны, корнеального тоннеля
Архитектура раны роговицы
Эпителиальный разрыв
Эндотелиальный разрыв
Локальный разрыв десцеметовой мембраны
Нарушение коаптации вдоль стромального тоннеля
Смещение краев эндотелия роговицы
Кератом для роговичного разреза
Одноразовые инструменты против многоразовых
Конфигурация лезвий
Безлезвийные методики
Тоннельный разрез у пациентов после радиальной кератотомии
Герметизация тоннельного разреза
Заключение
Список литературы
Техника роговичного разреза в хирургии катаракты
Оборот титула
Оглавление
Авторы
Предисловие
Список сокращений
Введение
Эволюция роговичного разреза от первого прокола до фемтолазерного разреза
Структура разреза роговицы
Положение разреза роговицы
Форма раны, корнеального тоннеля
Архитектура раны роговицы
Эпителиальный разрыв
Эндотелиальный разрыв
Локальный разрыв десцеметовой мембраны
Нарушение коаптации вдоль стромального тоннеля
Смещение краев эндотелия роговицы
Кератом для роговичного разреза
Одноразовые инструменты против многоразовых
Конфигурация лезвий
Безлезвийные методики
Тоннельный разрез у пациентов после радиальной кератотомии
Герметизация тоннельного разреза
Заключение
Список литературы
Показать все
Электронная медицинская библиотека "Консультант врача"
Cпециальности ВО
Акушерство и гинекология
(253)
Аллергология и иммунология
(50)
Анестезиология-реаниматология
(111)
Бактериология
(10)
Вирусология
(14)
Гастроэнтерология
(86)
Гематология
(32)
Генетика
(22)
Гериатрия
(17)
Гигиена детей и подростков
(9)
Гигиена питания
(8)
Гигиена труда
(6)
Гигиеническое воспитание
(2)
Дезинфектология
(5)
Дерматовенерология
(75)
Детская кардиология
(14)
Детская онкология
(7)
Детская урология-андрология
(3)
Детская хирургия
(40)
Детская эндокринология
(8)
Диетология
(22)
Инфекционные болезни
(88)
Кардиология
(144)
Клиническая лабораторная диагностика
(37)
Клиническая фармакология
(57)
Колопроктология
(9)
Косметология
(12)
Лабораторная генетика
(4)
Лечебная физкультура и спортивная медицина
(29)
Лечебно дело
(68)
Мануальная терапия
(7)
Медико-профилактическое дело
(6)
Медико-социальная экспертиза
(4)
Медицинская биохимия
(1)
Неврология
(148)
Нейрохирургия
(53)
Неонатология
(43)
Нефрология
(29)
Общая врачебная практика (семейная медицина)
(482)
Общая гигиена
(5)
Онкология
(114)
Организация здравоохранения и общественное здоровье
(156)
Ортодонтия
(7)
Остеопатия
(4)
Оториноларингология
(61)
Офтальмология
(60)
Паразитология
(3)
Патологическая анатомия
(33)
Педиатрия
(316)
Пластическая хирургия
(9)
Профпатология
(10)
Психиатрия
(74)
Психиатрия-наркология
(21)
Психотерапия
(40)
Пульмонология
(67)
Радиационная гигиена
(3)
Радиология
(22)
Радиотерапия
(8)
Ревматология
(33)
Рентгенология
(84)
Рентгенэндоваскулярные диагностика и лечение
(7)
Рефлексотерапия
(2)
Санитарно-гигиенические лабораторные исследования
(1)
Сексология
(5)
Сердечно-сосудистая хирургия
(25)
Сестринское дело
(2)
Скорая медицинская помощь
(64)
Социальная гигиена и организация госсанэпидслужбы
(10)
Стоматология детская
(25)
Стоматология общей практики
(87)
Стоматология ортопедическая
(26)
Стоматология терапевтическая
(32)
Стоматология хирургическая
(31)
Судебно-медицинская экспертиза
(12)
Судебно-психиатрическая экспертиза
(7)
Сурдология-оториноларингология
(8)
Терапия
(382)
Токсикология
(8)
Торакальная хирургия
(14)
Травматология и ортопедия
(71)
Трансфузиология
(22)
Ультразвуковая диагностика
(25)
Управление сестринской деятельностью
(16)
Управление и экономика фармации
(7)
Урология
(83)
Фармацевтическая технология
(20)
Фармацевтическая химия и фармакогнозия
(12)
Фармация
(15)
Физиотерапия
(26)
Физическая и реабилитационная медицина
(2)
Фтизиатрия
(24)
Функциональная диагностика
(31)
Хирургия
(200)
Челюстно-лицевая хирургия
(28)
Эндокринология
(144)
Эндоскопия
(15)
Эпидемиология
(12)
Настроить
Все
Закрыть меню